0%

Transition...

Think BIGGER,
with smaller models

The future of AI is Cooperative: Community generated data harnessed by compact AI models to produce results.

Precision Meets Efficiency: 7B Models Outperforming 70B Giants

We’re fine-tuning the open-source LogicNet 7B parameter model to not just match, but surpass the logical reasoning capabilities of 70B parameter models.

Our Mission

LogicNet-7b open source model to top the ZebraLogic Benchmark.Build the world’s largest open-source Logic data set, called Aristotle.
Introducing LogicNet, the pioneering framework that’s redefining the boundaries of logical reasoning in AI models.
/icons/three-bold.svg

Versatility: Reduced model size, lower computational overhead.

/icons/flash.svg

Efficiency: Effective in diverse logical reasoning tasks and domains.

/icons/check.svg

Accessibility: Open-source models, accelerating research and innovation.

Our Approach

These approaches synergize to create a powerfully efficient model, excelling in logical reasoning across various fields while maintaining a compact 7B parameter size.

Synthetic Dataset Fine-Tuning

/icons/stella.svgMiners generate tailored synthetic datasets
/icons/stella.svgTargets specific improvements in logical reasoning
/icons/stella.svgAddresses data scarcity and enhances model versatility

Multi-Domain Learning

/icons/stella.svgIncorporates diverse data pipelines for comprehensive reasoning skills
/icons/stella.svgSpans philosophy, coding, medicine, economics, law, and academia
/icons/stella.svgBroadens model applicability and deepens analytical capabilities

LogicNet Roadmap

Advancing Efficient Logical Reasoning in AI

Foundation and Benchmarking

/icons/stella.svgEstablish comprehensive logical reasoning benchmark suite using Zebra Bench

/icons/stella.svgDeploy baseline open source 7B parameter model with LogicNet framework integration

/icons/stella.svgImplement synthetic data generation pipeline with validator quality control

/icons/stella.svgDeploy multi-task learning framework for dataset enhancement

/icons/stella.svgCreate evaluation system for model comparison against 70B+ models

/icons/stella.svgMinimize overfitting exploitations

Innovation in Model Architecture, Data Set Growth and Training

/icons/stella.svgLaunch continuous data generation system through a duel-tasked miner network

/icons/stella.svgImplement quality-driven selection mechanisms through validators

/icons/stella.svgDeploy automated curation pipeline for synthetic dataset

/icons/stella.svgDevelop specialized logical reasoning training protocols

/icons/stella.svgCreate robust performance tracking metrics

Scaling and Research

/icons/stella.svgScale architecture to optimize 7B parameter performance

/icons/stella.svgImplement advanced overfitting prevention mechanisms

/icons/stella.svgDeploy continuous model improvement protocols

/icons/stella.svgLaunch research collaboration platform

/icons/stella.svgImplement interpretability analysis tools

/icons/stella.svgDeploy model explainability frameworks

Specialization Platform

/icons/stella.svgLaunch front-end ‘Logical Specialization’ interface

/icons/stella.svgDeploy payment and monetization mechanism for validators

/icons/stella.svgCreate specialized model tuning protocols and implement custom dataset creation tools

/icons/stella.svgDeploy enterprise-grade API access

Inregrated with the Best Tools

Seamlessly connect with native integrations for X, Telegram, Discord, Github,...